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Abstract. A method is proposed which allows an intrinsic ordering of the quasienergy states
for a time-periodic quantum system according to the number of essential zeros of the Husimi
distribution in phase space. The corresponding classical system shows a typical mixed dynamics
with coexisting regular and chaotic regions in phase space. The ordering of states allows a
straightforward comparison with semiclassical quantities. Moreover, a direct connection of the
organization of zeros with the underlying classical phase space dynamics is demonstrated.

1. Introduction

Generically, a classical system shows an intimate mixture of regular and chaotic dynamics,
the well known Poincaré scenario. The corresponding quantum behaviour is much less
understood. For the case of an integrable system, a semiclassical EBK quantization can be
successfully applied [1–3]. Purely chaotic systems are semiclassically analysed in terms of
periodic orbit quantization (see, for example, [4]). Of much recent interest is the connection
between classical phase space structures for mixed systems, where regular and chaotic phase
space regions are coexistent. Classically, an analysis of the dynamics is greatly simplified
by means of a Poincaré section of phase space.

An analysis of individual quantum states by means of quantum representations in phase
space, e.g. the Wigner or Husimi densities, allows a direct comparison with classical
dynamics (see, for example, [5]). The so-called ‘strong’ structures (the large density regions)
of these distributions show a close relationship to classical phase space structures for one-
dimensional time-periodic systems (discrete mappings [6, 7] or continuously driven systems
[2, 5, 8–10] also in context with tunnelling through dynamical barriers [11–16]) or two-
dimensional time-dependent ones as, for example, the diamagnetic hydrogen atom [17–19].

It has also been shown that a quantum phase space entropy derived from the Husimi
density provides a measure of global phase space localization properties, which allows a
direct comparison with the corresponding classical quantity [20].

Of recent interest are the ‘weak’ structures of the quantum phase space densities as, for
example, the region of negative values of the Wigner function and the zeros of the Husimi
function. Lebœuf and Voros [21] observed marked differences of the arrangement of the
zeros of the Husimi density for regular or chaotic regions of phase space, where the zeros
are organized on smooth curves in the regular region or they fill the chaotic regions like a
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gas. This behaviour was supported by an analysis of the properties of random states in terms
of the zeros of random analytic functions (random polynomials) [22, 23]. Thedynamicsof
the zeros was analysed by Lebœuf [24] and Cibilset al [25] studied the distributions of
zeros for the spin-boson model. The problem of phase retrieval in relation to the origin
of irreversibility was addressed by [26]. Recently, Dando and Monteiro [17] studied the
distribution of zeros for the eigenstates of the diamagnetic Kepler problem and confirmed
the observations of Lebœuf and Voros [21], as well as Tualle and Voros [27] in a study of
the elliptic and the stadium billiard. The last authors also introduced the idea of using the
number of the ‘essential’ zeros of the Husimi function as a kind of ‘fuzzy quantum number’.
Very recently, in an impressive study, Prosen [28] reported and analysed the distribution
of manyzeros for a generic but simple two-dimensional time-independent Hamiltonian and
demonstrated the uniform distribution on the chaotic region as well as their cubic nearest-
neighbour repulsion. The numerical study by Arranzet al [29] of a molecular system
modelling LiCN supported the idea of using the Husimi zeros as an indicator of regularity
or chaoticity.

Clearly, the zeros are not only of marginal importance, because they carry the entire
quantum information of a state and allow, in principle, a reconstruction of the state from
their positions (in addition, some more information is needed in order to determine the
exponential coefficientsC0, C1, C2 in (5) below). The zeros are, however, infinite in
number (with some exceptions, e.g. harmonic oscillator states or systems with compact
phase space [21]). In the following, it will be demonstrated that the zeros can be used to
establish an intrinsic ordering of the (regular or chaotic) states. This ordering supports a
semiclassical analysis in terms of classical phase space structures.

A presentation in phase space is obtained by projecting the wavefunction onto coherent
(minimum uncertainty) states

〈x|p, q〉 = φp,q(x) =
(
s

πh̄

)1/4

exp

[−s(x − q)2
2h̄

+ i
p

h̄

(
x − q

2

)]
(1)

with mean valuesq and p for position and momentum, respectively, and uncertainties
1p = √h̄s/2, 1q = √h̄/2s. The squeezing parameters = 1p/1q can be adapted to the
problem under investigation. The Husimi density is

%(p, q) =
∣∣∣∣∫ φ∗p,q(x)ψ(x) d(x)

∣∣∣∣2 (2)

with normalization

1
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∫
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A representation in the complexz = (sq + ip)/
√

2sh̄ plane,|z〉 = |p, q〉, reveals the
analytic properties: the Bargmann [30] transform〈z|ψ〉 is determined by an entire function
F(z) of order6 2,

〈z|ψ〉 = exp(− 1
2|z|2)F (z∗) (4)

whereF(z) can be expressed by the Weierstrass–Hadamard factorization in terms of the
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Hence the Husimi density|〈z|ψ〉|2 is uniquely determined by its zeros and the three
coefficientsC0, C1, C2, whereC0 takes care of the normalization, andC1, C2 are related
to translation, rotation and squeezing in phase space.

It can be shown that the class of states with afinite number of zeros in thez-plane is very
much restricted and consists only of generalized harmonic oscillator states [31]. Generally,
we find an infinite number of zeros, most of which are, however, far away in the complex
plane, i.e. in regions where the density is extremely small. Here we confine ourselves to
an investigation of the nearby zeros. We hope to demonstrate that the skeleton of the zeros
provides a useful and interesting insight into the quantum phase space organization.

2. Dynamics of a periodically driven anharmonic oscillator

As an example for a system with mixed regular and chaotic behaviour, we consider a forced
quartic oscillator

H(p, q, t) = p2

2m
+ bq4− f q cos(ωt) (6)

which is time-periodic with periodT = 2π/ω. We choose parameter valuesb = 0.25,
f = 0.5, ω = 1, a case for which the classical-quantum correspondence [9, 32] and the
semiclassical EBK quantization of the quasienergy states

〈q|α〉 = ψα(q, t) = eiεαt/h̄uα(q, t) uα(q, t + T ) = uα(q, t) (7)

have been investigated recently [2]. A value of ¯h = 0.05 is used in the quantum
computations presented here, which are obtained by time propagation of wavefunctions on
a grid followed by a spectral method for extracting the quasienergyεα and the quasienergy
states (for more details see [33, 34]). It should be stressed that (7) defines the quasienergies
εα only up to integer multiples ¯hω. Moreover, the ordering of theεα—or the quasiangles
θα = εαT /h̄—is arbitrary, in contrast to the time-independent case, where the states can
be unambiguously ordered by the energy eigenvalues. In previous studies, the states have
been ordered by increasing expectation values of, for example, the kinetic energy or the
Hamiltonian at time zero [2, 3, 9, 35]. Evidently, such an ordering reflects the phase space
morphology only in a very crude manner and states with a neighbouring quantum number
α may have a very different nature. Moreover, it is almost impossible to detect missing
states in a given sequence. An alternative ordering scheme is provided by the zeros of the
Husimi distribution, whose pattern clearly reflects the classical phase space organization.

For the Hamiltonian (6), the classical dynamics determined by the canonical equations
of motion shows the characteristic mixture of regular and chaotic motion. This is most
conveniently displayed by means of a Poincaré section of phase space. Figure 1 shows
a stroboscopic plot of the trajectory at timestn = nT , n = 0, 1, 2 . . . for selected initial
conditions. There is a clear division of phase space into three different regions: a chaotic
region is sharply separated from an outer regular region†. A second regular region is centred
on a T -periodic trajectory and appears as a stability island embedded in the chaotic sea.
The phase space area of the inner island is

∮
p dq = 2.25 and the chaotic sea covers an

area of
∮
p dq = 7.85.

In quantum mechanics, one can compute the time dependence of a minimum uncertainty
state (1) initially centred at(p0, q0) and the corresponding time-dependent Husimi density

† Note that for the Hamiltonian (6) all classical trajectories are bounded by invariant curves as proven, e.g. in [36].
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Figure 1. Classical stroboscopic Poincaré section for a
driven quartic oscillator (parametersb = 0.25,f = 0.5,
ω = 1).

Figure 2. Quantum phase space entropy for the
quantum system corresponding to figure 1.

at timestn = nT

%(p, q;p0, q0; tn) = 〈p, q|U(tn)|p0, q0〉 =
∫
φ∗p,q(x)ψp0,q0(x, tn) dx (8)

(we use a squeezing parameters = 1). The global phase space structure can be obtained by
calculating the quantum phase space entropy as a measure of the (time averaged) spreading
of the wavepacket [20]. If the Husimi distributions (2) of the individual quasienergy states
are known, the time averaging reduces to the computation of an averaged Husimi distribution
(assuming nondegenerate quasienergies):

%̄(p, q;p0, q0) = lim
N→∞

1

N + 1

N∑
n=0

%(p, q;p0, q0; tn) =
∑
α

%α(p, q)%α(p0, q0) (9)

and the phase space entropy is then given by

S(p0, q0) = − 1

2πh̄

∫
%̄(p, q, p0, q0) ln %̄(p, q, p0, q0) dp dq. (10)
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Figure 3. Husimi distributions of selected quasienergy states (dark colours represent high
densities). The number in each diagram is the ordering number assigned according to the zeros
of the distributions (marked by open circles).

The quasienergy states of the quartic oscillator (6) have been determined numerically
for h̄ = 0.05†. From the Weyl rule, we expect seven states localized on the stability island
and 25 states supported by the chaotic region. Figure 2 shows the phase space entropy of
the quantized system (6). The stability island appears as a region with low entropy values.
It is embedded in a high entropy area which corresponds to the classical chaotic region.
On average, there is a striking structural agreement with the classical Poincaré section in
figure 1. One observes, however, some regions with a considerably lower value of the
entropy, i.e. a quantum localization in phase space. This reflected in the properties of the
individual quasienergy states, which are discussed in the following.

3. Zeros of the Husimi distributions

The individual quasienergy states|α〉 can be classified by means of their Husimi
distributions, e.g. by computing their overlap with the different classical phase space regions.
A selection of the complete catalogue of the Husimi distributions for ‘low’ quasienergy
states is shown in figure 3. The phase space region shown agrees with the region of the

† The precise nature of the quantum quasienergy spectrum for the driven quartic oscillator (6) is still unknown.
It has been shown, however, that the spectrum is pure point for small driving amplitudef [37].
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classical Poincaré section (1). Dark shading of the contour plot corresponds to regions of
large density. The zeros of the distribution are marked by circles. Apparently, the main
characteristic feature of the individual Husimi distributions is the strong localization on a
classical flux tube. This tube is, of course, to a large extent destroyed in the chaotic region,
however, it is still visible in the quantum case as a highly organized sequence of maxima
and saddle points. A remarkable result is the possibility of ordering the states according
to the number of ‘essential’ zeros, i.e. those, which appear inside this main ridge of the
Husimi distribution. This relation seems to be one to one, at least in the present case, which
suggests the use of this ordering number (given in the upper left corner of the graphs) as
theα label of the quasienergy states. Infinitely many additional zeros can be found outside,
where the density is very small. It should be noted that this numbering appears to be similar
to the assignment of a ‘fuzzy’ quantum number for the case of billiard systems in [27].

The first graph in figure 3 shows the ground state|0〉 without any zero in the inner
region of high density. Additional zeros are distributed almost uniformly over the classically
chaotic region of phase space (see figure 1). The zeros at larger distances, i.e. in the region
of very small values of the Husimi density, donot represent true zeros of the distribution.
They are strongly influenced by the finite numerical precision. A fraction of these zeros
appear to be distributed along a smooth curve, similar to the crystallization effect discussed
for the roots of random polynomials [22]. This behaviour is found for all states. In figure 3,
these ‘spurious’ zeros are not shown for the states 30, 35 and 40.

For the state|5〉, which is still localized on the island region, we find five zeros inside
the main region. For the state|10〉, the 10 zeros are in a region where the Husimi density is
small, surrounded by a region of high density. Using criteria as overlap with the classical
regions of phase space or the value of the phase space entropy, this state is classified as
belonging to the chaotic part of the phase space. The states 0–6 (ordered according to the
zeros) show a strong overlap with the inner stability island, the states 7–31 with the chaotic
region, i.e. we have seven states localized on the inner island and 25 states localized on the
chaotic region, as predicted by the Weyl rule.

All the essential zeros are still localized in the region of the stability island, but their
distance from the period-one fixed point at the centre has increased. The inner region
of smaller values of the Husimi density, where the relevant zeros appear, widens with
an increasing ordering number up to state|40〉, which shows a pronounced crater-shaped
structure, inside of which the essential zeros are found. This state is classified as an outer
regular state.

By closer inspection, two structural transitions can be found for the states 15↔ 16
and 21↔ 22. For the state|15〉, which localized in the stability island, we observe six
zeros embedded in the region of high density in addition to the 15 principal zeros, which
undergo a resonance transition from|15〉 to |16〉 as discussed in detail below. A similar
phenomenon is found for the transition 21↔ 22.

It may also be of interest to point out that the fraction of zeros on the real axis (in
particular in the interval in the chaotic region) is quite large, which seems to be typical for
symmetry lines (here the real axis) [22].

4. Semiclassical considerations and influence of classical phase space structures

In the regular phase space regions, where a semiclassical quantization is possible, the
ordering number assigned by the zeros agrees with the semiclassical quantum number [2, 3].
The present ordering scheme, however, also covers the chaotic region and continues to the
outer regular regime. Moreover, this scheme seems to provide a grouping of states into
different categories distinguished by their quasienergy spacings.
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Figure 4. Quasienergy distances as a function of the ordering number. States in (a) are localized
in the inner regular region, states (e) in the outer regular region. The chaotic region (b–d) is
interrupted by the resonance states (c).

4.1. Quasiangle distance

The ordering of the quasienergy states by their zeros allows a comparison with semiclassical
considerations also in the chaotic region of phase space. As a result of the semiclassical EBK
quantization [2, 3], the distance between two neighbouring quasiangles is approximately
given by 2π times the classical winding number�. As shown in figure 4, distances decrease
monotonously with the ordering number up to the state|15〉. This trend continues smoothly
from the inner regular region (a) to the chaotic region (b–d). The strong deviation for the
states|16〉 and |22〉 marks the beginning and the end of the resonance region (c), where
the quasiangles are almost equidistant and the states show a strong structural similarity.
Beyond this resonance region, the quasiangle separations decrease up to the state|32〉,
which is localized on the inner boundary of the outer regular region (e). Here, the function
shows a pronounced minimum followed by a steep increase. The position of the resonance
regime and the transition from the chaotic to the outer regular regime are therefore clearly
visible in the quasienergy separation of the properly ordered states.

Inside the stability islands, the classical winding number decreases from� = 1.396 to
� = 1.376 (compare with [2]) corresponding to quasiangles of 2.489–2.365, which is in
agreement with the computed quantum values. In the plateau region, one finds a winding
number of� = 1.332 ≈ 4

3 from the average quasiangle distance12 = 2.085. The
deviations of the quasiangle for the states|16〉 and |22〉 from the overall trend in figure 4
can be interpreted as due to the influence of the resonance. The quasiangles in the resonance
region are almost equidistant.

The value of the minimum at state|32〉 with 12 = 1.270 agrees well with the winding
number� = 1.202 of the corresponding flux tube [2], which once more allows an EBK
quantization in the outer regular region. Further out, the quasiangle distances and winding
numbers increase with approximately equal values.
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Figure 5. Husimi distribution of the resonance state|19〉. Classically, this state is supported by
a chain of 12 islands marked by dots. Also shown are the boundaries of the regular region and
a magnification of one of the classical islands.

4.2. Resonance states

The strong structure of the Husimi distribution of the states|16〉–|21〉 are all very similar
(distinguished, however, by their increasing number of inner zeros) and show a pronounced
localization on six points in phase space as shown for state|16〉 in figure 3 and|19〉 in
figure 5. Semiclassically, the equidistant quasiangles correspond to the rational winding
number 4

3 of a classical vortex tube, which suggests a resonance phenomenon.
Analysis of the classical system reveals small stability islands embedded in the chaotic

sea in the neighbourhood of the localization region of the Husimi distributions. In figure 5, a
chain of 12 islands is marked by dots. Also shown are the boundaries of the regular classical
region as well as a magnification of one of the islands. Because of the comparatively large
value of h̄, the Husimi distributions of state|19〉 in figure 5 does not fully resolve the 12
small islands. Six maxima of the distribution appear, which are localized in the middle of
pairs of neighbouring islands extending over an area of the order ofh ≈ 0.3.

Despite the apparently uniform classical region, the resonance states|16〉–|21〉 are
strongly influenced by the embedded bifurcated elliptic fixed points. These island regions
originate from a flux tube with winding number4

3, which is distorted and partly destroyed,
and only 12 periodic islands have survived. The quantum phase space entropy in figure 2
shows pronounced minima in these regions, i.e. quantum localization supported by classical
fixed-point structures, whose area is small compared toh.

4.3. Resonance transition

In the following, the resonance transition from state|15〉 to state |16〉 is discussed in
more detail. Figure 6 compares the Husimi distributions of both states. The zeros of the
distributions are marked by open circles and squares, where the inner ones (circles) are
taken into account for the determination of the quasienergy ordering number.

In the transition to state|16〉, a structural change of the configuration of maxima and
zeros is observed. For the state|15〉, the 15 essential zeros are located in the inner low
density region, which is similar in form to the classical stability island. This region is
surrounded by a ridge of large values of the Husimi distribution, interrupted by six zeros
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Figure 6. Resonance transition: Husimi distribution of states|15〉 and|16〉 (logarithmic scaling).
The essential zeros are marked by open circles or squares. In the transition the six zeros and
maxima along the ridge exchange their role.

(marked by open squares). All these six zeros are located at the remaining elliptic fixed
points of the destroyed flux tube with winding number4

3 as described in section 4.2.
For the state|16〉, the ridge structure has drastically changed. The distribution shows

six pronounced maxima (marked by full squares), whose positions correspond to the six
zeros of the state|15〉 marked by open squares. The resonance transition interchanges the
localization of low and high density, i.e. zeros and maxima, on the ridge.

Furthermore, it should be noted that the zeros marked by squares in figure 6 for state
16 are very close to the classical hyperbolic fixed points, while those of state 15 are close
to the elliptic ones. The 16 ‘essential’ zeros are located inside the regions of the hyperbolic
and elliptic fixed points, i.e. within the destroyed flux tube with winding number4

3.
Finally, it should be pointed out that a related observation of a localization of the

Husimi zeros on families of classical stable and unstable resonance orbits (i.e. a ‘scarring’
of the wavefunction) has been reported in a very recent study of a two-dimensional time-
independent system [29] modelling LiCN [29].

5. Concluding remarks

As pointed out in a recent article by Dando and Monteiro [17]: ‘The detailed morphology of
quantum phase space for individual states when some or all classical phase space is chaotic,
remains an open theoretical problem.’ In the present study we have demonstrated for a one-
dimensional time periodic system that the zeros of the Husimi phase space distribution
carry valuable information in close connection with the underlying classical dynamics.
Quite unexpected, the zeros could be used for a classification and even an ordering of
the quasienergy states. However, the present classification has been made easier by the
simple phase space structure and may not directly be applied to more complex situations.
Additional studies for such systems are required.

Furthermore, it is demonstrated that the distribution of zeros reveals distinctive patterns
in the classically chaotic or regular regions of phase space, which show a structural
reorganization in characteristic (resonance) transitions. The localization of the ‘resonance
state’ corresponds classically to a (partly destroyed) chain of elliptic/hyperbolic fixed points
and classical phase space structures localized on an area small in comparison withh show
a pronounced influence on the quantum states.
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Figure 7. Classical stroboscopic Poincaré section
for a driven quartic oscillator (parametersb = 0.25,
f = 0.5,ω ≈ 0.618). Two distinct chaotic regimes
are separated by a KAM torus.

Figure 8. Husimi distribution of state|17〉 for the
quartic oscillator shown in figure 7(h̄ = 0.02).
Also shown is the classical KAM torus separating
the two chaotic regions.

Similar observations for different parameters of the Hamiltonian (6) support these
observations. As an example, another connection between the position of the zeros of
the Husimi distribution and classical phase space structures shall be briefly discussed,
which demonstrate the correspondence between the position of the zeros and the classical
phase space structure for the case of an intact KAM torus. Figure 7 shows a stroboscopic
Poincaŕe section of the quartic oscillator (6) for a strongly irrational driving frequency
ω = (

√
5 − 1)/2 ≈ 0.618. In this special case we have two distinct extended chaotic

regions, which are separated by a thin KAM torus with winding number 0.822 (a noble
number). Classically, this KAM torus is an impenetrable obstacle for the phase space flow.
In addition, one observes a cantorus inside the inner chaotic region. Figure 8 shows the
Husimi distribution of a selected quasienergy state(h̄ = 0.02). This state,|17〉 as numbered
by the essential zeros, localizes on the separating KAM torus (in fact, it can be quantized
semiclassically by an EBK torus quantization). Because of the nondestruction of the KAM
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torus for this case, the correct allocation of the zeros causes no problem.
Inside the classical KAM torus, which is also shown in the figure, we find the 17 zeros,

which are used in the ordering of states. In the neighboured states|16〉 and |18〉 16 resp.
18 zeros are found inside the KAM torus.

In summary, we have presented numerical evidence for the importance of the zeros of
the Husimi function. Clearly, our discussion is quite descriptive and a deeper theoretical
analysis is necessary to validate (or disprove) our findings.
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